If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2=946
We move all terms to the left:
h^2-(946)=0
a = 1; b = 0; c = -946;
Δ = b2-4ac
Δ = 02-4·1·(-946)
Δ = 3784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3784}=\sqrt{4*946}=\sqrt{4}*\sqrt{946}=2\sqrt{946}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{946}}{2*1}=\frac{0-2\sqrt{946}}{2} =-\frac{2\sqrt{946}}{2} =-\sqrt{946} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{946}}{2*1}=\frac{0+2\sqrt{946}}{2} =\frac{2\sqrt{946}}{2} =\sqrt{946} $
| x^2=129 | | t^2=129 | | 7x-16=9x+3-3x | | u^2=1849 | | 4(x-3)+3(x+4)=4 | | 1.2w=8 | | 15x+16=14x-14 | | 11^-9x=9 | | -16x^2+80x+24=0 | | 432d+432d=4(78-90)+12 | | -5+m=6 | | H=-5t^2+100+15 | | 7x-x+9=3x+19+x-20 | | m-8=m(m+1) | | 2.7x=1.2 | | 2x+2*5x+2=66 | | p+6.2=12 | | p-1/4=3/8-1/2p | | 32+t=38 | | m-15=17 | | 0.27(12)+0.03x=0,09(12+x) | | 23.24=4g+3.88 | | 5y/3=17/4* | | 4-3x=54 | | (3u-5)(3-u)=0 | | 10+4x=125 | | 6x+4=3x+17 | | 3(12x-11)=471 | | x×x+1=125 | | 4x-1=2x+1=8x-4 | | (2x-5)-(x+5)=x | | |3-2x|=11+x |